Wilhelm Killing

V tomto článku prozkoumáme téma Wilhelm Killing z různých úhlů. Budeme analyzovat jeho dopad na současnou společnost a také jeho historickou relevanci. Prozkoumáme také různé perspektivy, které existují kolem Wilhelm Killing, od odborných názorů po osobní zkušenosti. Prostřednictvím této analýzy se budeme snažit nabídnout komplexní pohled na Wilhelm Killing a jeho vliv na různé aspekty každodenního života. Kromě toho prozkoumáme možná řešení nebo přístupy k řešení problémů souvisejících s Wilhelm Killing. Doufáme, že tento článek bude zajímavý pro ty, kteří chtějí prohloubit své znalosti o Wilhelm Killing a jeho důsledcích v současné společnosti.

Wilhelm Killing
Narození10. května 1847
Burbach
Úmrtí11. února 1923 (ve věku 75 let)
Münster
Alma materMünsterská univerzita
Humboldtova univerzita
Povolánímatematik a vysokoškolský učitel
ZaměstnavatelMünsterská univerzita
OceněníLobačevského cena (1900)
Logo Wikimedia Commons multimediální obsah na Commons
Některá data mohou pocházet z datové položky.

Wilhelm Karl Joseph Killing (10. května 1847, Burbach (Severní Porýní-Vestfálsko) – 11. února 1923, Münster) byl německý matematik, který podstatně přispěl k teorii Lieových algeber, Lieových grup, a neeuklidovských geometrií.

Killing studoval na univerzitě v Münsteru a napsal svou disertační práci pod vedením Karla Weierstrasse a Ernsta Kummera v Berlíně v roce 1872. V letech 1868 až 1872 vyučoval na gymnáziích. Stal se profesorem v semináři vysoké školy Collegium Astoria v Braunsbergu (dnes Braniewo v Polsku). Následně byl zvolen rektorem vysoké školy a předsedou městské rady. Jako profesor a správce byl Killing všeobecně oblíbený a respektovaný. Nakonec v roce 1892 se stal profesorem na univerzitě v Münsteru. V roce 1886 Killing i jeho manželka vstoupili do Třetího řádu sv. Františka.

V roce 1878 psal v časopise Crelle's journal o prostorových formách a roku 1880 o výpočtech v hyperbolické geometrii. Když referoval o Weierstrassových přednáškách, zavedl hyperboloidní model, popsaný ve Weierstrassových souřadnicích'.

Kolem roku 1880 Killing vynalezl Lieovy algebry nezávisle na Sophusu Liem. V knihovně Killingovy univerzity nebyl skandinávský časopis, v němž Lie publikoval svůj článek. Lie byl později ve vztahu ke Killingovi nepřátelský a tvrdil, že vše co je platné již bylo prokázáno jím, a vše co je neplatné přidal Killing. Ve skutečnosti byla Killingova práce méně přísně logická. Killing měl vyšší cíle, pokud jde o klasifikaci grup, a učinil řadu neověřených dohadů, které se ale ukázaly být pravdivé. Protože Killingovy cíle byly tak vysoké, byl velmi skromný pokud jde o jeho vlastní zásluhy.

Od roku 1888 do 1890 Killing v podstatě klasifikoval komplexní jednoduché Lieovy algebry s konečným počtem dimenzí a jako nezbytný krok ke klasifikaci Lieových grup vymyslel pojmy Cartanova subalgebra a Cartanova matice. Dospěl tak k závěru, že v podstatě jediné jednoduché Lieovy algebry jsou ty, jež jsou spojeny s lineárními, ortogonálními a symplektickými grupami, kromě několika ojedinělých výjimek. Cartanova disertační práce z roku 1894 byla v podstatě přesným přepisem Killingových objevů. Killing rovněž zavádí pojem kořenový systém. V roce 1887 objevil výjimečnou Lieovu algebru g2, jeho kořenový systém klasifikace ukázal všechny mimořádné případy, ale konkrétní konstrukce přišly později.

Reference

V tomto článku byl použit překlad textu z článku Wilhelm Killing na anglické Wikipedii.

Literatura

  • Coleman, A. John, "The Greatest Mathematical Paper of All Time," The Mathematical Intelligencer, vol. 11, no. 3, pp. 29–38.
  • Hawkins, Thomas, Emergence of the Theory of Lie Groups, New York: Springer, 2000.
  • Killing, "Die Zusammensetzung der stetigen/endlichen Transformationsgruppen", Mathematische Annalen, sv. 31, č. 2, červen 1888, str. 252-290

Externí odkazy