V dnešním světě je Organické sloučeniny železa tématem, které upoutalo pozornost milionů lidí po celém světě. Od svých počátků až po dopad na dnešní společnost se Organické sloučeniny železa stal fenoménem, který nadále vyvolává diskuse a kontroverze. V průběhu historie hrál Organické sloučeniny železa zásadní roli v životech lidí a ovlivňoval způsob, jakým žijeme, přemýšlíme a chováme se k ostatním. V tomto článku prozkoumáme význam Organické sloučeniny železa a jeho význam v dnešním světě, prozkoumáme jeho nejdůležitější aspekty a jeho dopad v různých oblastech společnosti.
Organické sloučeniny železa jsou organokovové sloučeniny obsahující vazby mezi atomy uhlíku a železa.[1][2] Tyto sloučeniny, například pentakarbonyl železa, nonakarbonyl diželeza a tetrakarbonylželeznatan disodný. Železo může zaujímat oxidační čísla Fe−II až FeVII, nejvyšší zaznamenané v organických sloučeninách je FeIV. I když je železo obecně katalyticky méně aktivní, tak je levnější a šetrnější k životnímu prostředí než ostatní kovy.[3]
Organoželezové sloučeniny mají využití jako ligandy; podobně jako ostatní organokovové sloučeniny upravují vlastnosti ligandů, jako jsou fosfiny, oxid uhelnatý a cyklopentadienyl, lze je ovšem použít i s „tvrdými“ ligandy, jako jsou aminy.
K významným karbonylům železa patří tři neutrální binární karbonyly, pentakarbonyl železa, nonakarbonyl diželeza a dodekakarbonyl triželeza. Jeden nebo více karbonylů v těchto sloučeninách lze nahradit řadou jiných ligandů, například alkeny nebo fosfiny.
Tetrakarbonylželeznatan disodný (Na2), komplex obsahující Fe2−, známý také jako „Collmanovo činidlo“, je možné připravit redukcí pentakarbonylu železa sodíkem. Tuto silně nukleofilní aniontovou sloučeninu lze dále alkylovat a karbonylovat za vzniku acylových derivátů, jež mohou podstoupit protonolýzu na aldehydy:[4]
Podobné acyly lze získat reakcemi pentakarbonylu železa s organolithnými sloučeninami:
Karboanion zde atakuje CO ligand. Obdobně lze Collmanovo činidlo použít na přeměnu acylchloridů na aldehydy. Podobných reakcí se také dá dosáhnout s využitím solí −.[5]
Pentakarbonyl železa fotochemicky reaguje s alkeny za vzniku komplexů typu Fe(CO)4(alken).[6]
Komplexy dienů a železa se obvykle připravují z Fe(CO)5 nebo Fe2(CO)9. Příslušné deriváty jsou známy od jednoduchých dienů, jako jsou cyklohexadien, norbornadien a cyklooktadien, ale i od cyklobutadienu lze vytvoří stabilizované sloučeniny. U komplexů buta-1,3-dienu má dien koinformaci cis. Karbonyly železa mohou být využity jako chránicí skupiny pro dieny, jež brání jejich hydrogenacím a Dielsovým–Alderovým reakcím. Trikarbonyl cyklobutadienželeza se připravuje z 3,4-dichlorcyklobutenu a Fe2(CO)9.
Cyclohexadieny, mnohdy získané Birchovou redukcí aromatickým sloučenin, vytváří komplexy typu (dien)Fe(CO)3. Afinita Fe(CO)3 ke konjugovaným dienům se projevuje v schopnosti karbonylů železa katalyzovat izomerizace cyklookta-1,5-dienu na cyklookta-1,3-dien. Z komplexů cyklookadienů mohou být odstraněny hydridové skupiny za vzniku cyklohexadienylových kationtů, na které se poté adují nukleofily. Odštěpením vodíků z cyclohexadienových komplexů Fe0 se tvoří sloučeniny Fe2+.[7][8]
Enonový komplex trikarbonyl (benzylidenaceton)železa slouží jako zdroj Fe(CO)3 jednotek při přípravách dalších derivátů. Využití má podobné jako Fe2(CO)9.
I alkyny vytvářejí komplexy s karbonyly železa, jako například ferroly (Fe2(C4R4)(CO)6), (p-1,4-benzochinon)Fe(CO)3, (cyklobutadien)Fe(CO)3 a mnoho dalších.[9]
Stabilní komplexy se železem, s CO ligandy i bez nich, jsou známy od mnoha polynenasycených uhlovodíků, jako jsou cykloheptatrien, azulen a bulvalen. Od cyklooktatetraenu (COT) jsou například známy deriváty Fe(COT)2,[10] Fe3(COT)3[11] a několik smíšených karbonylů (například Fe(COT)(CO)3 a Fe2(COT)(CO)6).
Protože je oxidační číslo +2 u železa běžné, tak je znám i velký počet odpovídajících sloučenin. Sloučeniny FeI často obsahují vazby Fe-Fe, i když zde existují výjimky, jako například −.[12]
Rychlý rozvoj organokovové chemie ve 20. století nastal s objevem ferrocenu, značně stálé sloučeniny, která předznamenala řadu dalších sendvičových sloučenin. Ferrocen se získává reakcí cyklopentadienidu sodného s chloridem železnatým:
Ferrocen vykazuje na cyklopentadienylových ligandech různorodou reaktivitu, například Friedelovy–Craftsovy reakce a lithace. Některé elektrofilní funkcionalizace ovšem začínají atakem na Fe centru za tvorby meziproduktů se vzorcem + (které obsahují železo v oxidačním čísle +4). Jako příklad lze uvést reakci HF:PF5 a Hg(OTFA)2, při které vznikají izolovatelné nebo spektroskopicky pozorovatelné komplexy +PF6– a Cp2Fe+–Hg–(OTFA)2.[13][14][15]
Na zvláštnost struktury ferrocenu ukazuje také oblíbenost ligandů jako je 1,1'-bis(difenylfosfino)ferrocen, užitečbých v katalýze.[16] Reakcí ferrocenu s chloridem hlinitým a benzenem se vytváří kation +. Oxidací ferrocenu vzniká modrý 17elektronový ferroceniový kation. Jako vysoce substituované ligandy mohou být též použity deriváty fullerenů .
Fe(CO)5 reaguje s cyklopentadienem za vzniku dvojjaderné sloučeniny FeI nazývané dimer dikarbonylu cyklopentadienylželeza (2), zkráceně Fp2. Pyrolýzou Fp2 vzniká 4.
Stericky silně zatížené substituované cyklopentadienyly lze izolovat v monomerní formě, díky tomu byla například stanovena struktura Cpi-PrFe(CO)2 (Cpi-Pr = i-Pr5C5).[17]
Redukcí Fp2 sodíkem vzniká NaFp, silný nukleofil a prekurzor řady sloučenin typu CpFe(CO)2R.[18]
Sloučenina + se používá při cyklopropanacích.[19] Komplex Cp(CO2)Fe+(η2-vinylether]+ obsahuje maskovaný vinylový kation.[20]
Sloučeniny Fp-R jsou prochirální a byly použity na přípravu chirálních molekul CpFe(PPh3)(CO)acyl.[21]
Jednoduché peralkylové a perarylové komplexy jsou méně běžné než komplexy Cp a CO; příkladem sloučeniny může být tetramesityldiželezo.
Sloučeniny typu +X− mají využití při allylových substitucích.[6] Sloučeniny popsatelné obecným vzorcem se vyznačují η1-allylovými skupinami a jsou podobné allylovým sloučeninám prvků hlavní skupiny (M je například B, Si nebo Sn) a reagují s uhlíkatými elektrofily za tvorby produktů allylací s SE2′ selekivitou.[22] Obdobně mají dikarbonylové komplexy allenyl(cyklopentadienyl)železa vlastnosti podobné allenylkovovým sloučeninám.[23]
Komplexy druhu Fe2(SR)2(CO)6 a Fe2(PR2)2(CO)6 se připravují reakcemi thiolů či sekundárních fosfinů s karbonyly železa.[24] Thioláty lze také získat z tetraedranu Fe2S2(CO)6.
Některé organoželezité sloučeniny je možné připravit oxidacemi příslušných sloučenin železnatých., jako příklad může být použito ferrocenium +. Je znám velký počet organoželezitých komplexů porfyrinů.
V komplexu Fe(norbornyl)4 je čtyřmocné železo stabilizováno alkylovým ligandem odolným vůči beta-hydridové eliminaci.[26]
FeCy4, který je náchylný k beta-hydridové eliminaci, ovšem také byl izolován a krystalograficky prozkoumán, neboť je stabilní při –20 °C. Jeho neočekávaná stálost se připisuje stabilizačním disperzním silám a konformačním efektům, v jejichž důsledku je beta-hydridová eliminace nevýhodná.[27]
Dvoulelektronovou oxidací dekamethylferrocenu vzniká dikation 2+, který vy\tváří karbonylový komplex se vzorcem (SbF6)2.[28]
V průmyslové katalýze se komplexy železa používají méně často než sloučeniny organické sloučeniny kobaltu a niklu. Vzhledem k nízkým nákladům a malé toxicitě jsou sloučeniny železa oblíbenými stechiometrickými reaktanty.
K oblastem jejich využití patří:
V rámci bioorganokovové chemie organické sloučeniny železa fungují jako aktivní místa několika enzymů, tří hydrogenáz a dehydrogenázy oxidu uhelnatého.
V tomto článku byl použit překlad textu z článku Organoiron chemistry na anglické Wikipedii.